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LETTER TO THE EDITOR 

Size versus electronic factors in transition metal Laves 
phase stability 
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t Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan 
$ Department of Mathematics, Imperial College of Science, Technology and Medicine, 
London SW7 2BZ, UK 

Received 15 August 1990 

Abstract. The different roles played by atomic size and electronic factors in stabilizing 
the transition metal Laves phases against the two competing phases Cllb(MoSi,) and 
C16(CuA12) are studied within a simple tight binding d bond model. Good qualitative 
agreement with the experimental AB2 structure map is found if size and electronic factors 
are both included. 

The AB2 Laves phases are the best known examples of size-factor compounds in which 
the relative sizes of the atoms are important in determining the structural stability. For 
the Laves phases the closest packing of the two types of constituent atoms occurs for the 
radius ratio rA/rB = d 3 / d 2  = 1.225 (see for example [l]). In practice, however, the 
ratio of the Goldschmidt atomic radii of the pure elements forming the phases varies 
from 1.05 to 1.68 [2]. Thus, other factors such as the average number of electrons per 
atom or e/a ratio must also be important [MI. In this letter we examine within a simple 
tight binding model the stability of the transition metal Laves phases relative to two other 
competing phases, namely the Bcc-based Cllb(MoSi2) structure type and C16(CuA12). 
We will see that the structural energy difference theorem [7] allows us to separate out 
the different roles played by atomic size differences and electronic factors. 

Figure 1 shows the experimental structure map (AtA, AB) for the AB2 transition 
metal compounds. The phenomenological coordinate A4 is the so-called Mendeleev 
number which orders all the elements in the periodic table with respect to one 
another [ 181. We see that the C14(MgZn2), C15(MgCu2) and C36(MgNi2) Laves phases 
are all located above the diagonal AtA = AtB, whereas the C16(CuA12) domain is located 
below it. Moreover, we see that the Laves phases reach down towards the diagonal in 
the vicinity where the BCC lattice is most stable for the elemental group VA and VIA 
transition metals. On the other hand, compounds with the Cllb(MoSi2) structure type, 
which is derived from the BCC lattice by stacking pure A or pure B (100)planes together, 
are found only at the upper left-hand and lower right-hand corners of the map, far away 
from the diagonal. We now show that this behaviour can be accounted for theoretically. 

0953-8984/90/418189 + 06 $03.50 @ 1990 IOP Publishing Ltd 8189 



8190 Letter to the Editor 

50 

o . 'ra 

0000 1 x . ZI 
* X  * X . T I  / e .  .. . . O . X - H f  

* . Y  
* ' I," . .... S r  

/ 

- , 
. /  

/ 

0 4  0 7  1 0  1 5  2 0  3 0  
-0 3 

91 

Figure 2. The fractional change in prepared vol- 
ume AV/Vwith respect to the Cllb(MoSi2) lat- 
tice versus the relative size factor a. 

The tight binding (TB) d bond model is the simplest scheme for describing the 
energetics of transition metal compounds within a quantum mechanical framework [9- 
111. The total binding energy per AB2 formula unit may be written in the form 

Urep -k Ubond (1) 
where Urep is a semiempirical pairwise repulsive contribution and Ubond is the covalent 
d bond energy which results from computing the local density of states ni(&) at site i 
within the two-centre, orthogonal tight binding approximation. That is, 

where is the Fermi energy and X is the number 
of AB2 formula units in the crystal. The bond energy is evaluated under the constraint 
that each site is locally charge neutral, the A and B sites being characterized by NA and 
NBvalence d electrons respectively. The simple form of equation (1) may be derived from 
first principles (see [12] and references therein). The pairwisenature of the repulsive term 
follows directly from the Harris-Foulkes approximation [ 13, 141 to density functional 
theory, whereas the Huckel-type two-centre orthogonal form of the matrix elements may 
be justified in principle within Anderson's chemical pseudopotential theory [ 15, 161. 

The bond energy was evaluated for the different structure types assuming canonical 
TB bond integrals dd(a, n, 8 )  = (-6,4, -l)h(R) where 

is the atomic d energy level at site i, 

where R is the internuclear separation and CA, CB are constants characteristic of the A,  
B constituents [17]. The AB bond integrals are given by the geometric mean of the AA 
and BB hopping integrals. The repulsive pairwise interactions between the different 
sites were assumed to be proportional to the square of the hopping integrals h ( R ) ,  
namely 

where k is the constant of proportionality and $AB is given by the geometric mean. This 
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Table 1. The structure coefficients e,,, . The number of atoms included in the summation of 
equation (6) is indicated in parentheses. The Pearson symbol gives the symmetry of the unit 
cell (cubic, hexagonal or tetragonal) and the number of atoms per unit cell. 

Structure Pearson 
type symbol LYAA f f ~ ~   AB 

Cllb(MoSi2) t16 5.378(16) 57.241(74) 92.971(84) 
C14 (MgZn,) hP12 5.744(16) 129.351(58) 52.817(54) 
C15 (MgCuz) cF24 5.744( 16) 129.303( 60) 52.866(56) 
C36 (MgNi,) hP24 5.744( 16) 129.327( 59) 52.842(55) 
C16 (CUAI,) t112 23.056(6) 34.205( 22) 141.872( 16) 

simplifying assumption that @ ( R )  a(h(R))' is capable of reproducing the behaviour of 
the band width, cohesive energy, equilibrium volume and bulk modulus across the 
elemental 4d and 5d transition metal series (see figure 30 of [lo]). 

It follows that the repulsive energy per AB2 formula unit may be written 

Upp = 1.5 kQ-10/3CiCg(aAB + %'aAA + %-5(YBB) (5) 
where SZ is the volume per formula unit. The volume-independent but structure-depen- 
dent coefficients attt are defined by 

where the sum extends over the relevant AA, BB or AB interactions on the lattice and 
3X gives the total number of atoms in the crystal. Table 1 gives the values of the 
coefficients att, for the five different structure types shown in figure 1, assuming c/a = 
0.8324 and U = 1/6 for the C16(CuA12) lattice [18]. % is the relative size factor which is 
defined by % = C A / C B .  It is a direct measure of the relative size of the A and B atoms 
since it follows from equation (4) that AA and BB atomic pairs experience the same 
repulsive energy for internuclear separations R A A  = 2 1 A ,  R B B  = 2rB such that 

r A / r B  = CA/CB = %. (7) 
The relative importance of size and electronic factors in determining the structural 

trends in figure 1 can be studied directly by using the structural energy difference 
theorem [17]. This theorem states that the energy difference between any two equi- 
librium structures of a system characterized by a binding energy law of type (1) is given 
to first order by 

= ( A ~ b o n d ) * U , , p = O .  (8) 

That is, the relative stability of two structures is determined solely by the bond energy 
provided their volumes have first been prepared so that the different lattices display the 
same repulsive energy. 

This theorem is very important because it allows the relative stability of different 
structures to be interpreted within a two-step process which makes immediate contact 
with one's physical intuition [19]. In the first step the volumes of the different structure 
types are adjusted to guarantee the same repulsive energy. This stage depends only on 
the nature of the repulsive interaction and reflects the relative atomic sizes of the 
constituents through equation (7). It generalizes the usual classical procedure of packing 
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Figure 3. The theoretical structure maps ( N A ,  NB) for 9. = 1 (left-hand panel) and 9. = 1.35 
and 0.84 (right-hand panel). 

together hard spheres until they touch. In the second step the bond energies are com- 
pared at these prepared volumes in order to see which structure is most stable. This 
corresponds in the ioniclimit to the customary practice of comparing Madelung energies. 
In the present case of metallic compounds it reflects the electronic factor through the 
occupancy of the bands and bonding states. 

The first step, therefore, is to prepare the volumes of the different structures so that 
they experience the same repulsive energy as some reference lattice which we have taken 
to be the Bcc-based Cllb(MoSi2) structure type. It follows from ( 5 )  that the difference 
in volume AV is given to first order by 

where the A&,,, are the corresponding differences in the repulsive coefficients. Thus, 
the fractional change in volume is a function only of the relative size factor 3 so that a 
universal curve may be plotted for each structure type (with a given set of internal 
coordinates) as shown in figure 2. 

We see that for % = 1 the Bcc-based lattice Cllb(MoSi2) is more closely packed 
than either the Laves phases or C16(CuA12). However, as expected, as 3 increases the 
Laves phases assume a more compact lattice than BCC for % > 1.13. In the limit as 3 
tends to infinity, the Laves phases again have a larger volume as the A atoms of the cubic 
C15 phase, for example, sit on a tetrahedrally coordinated diamond lattice [l] whereas 
those of the C l l b  phase sit on a six-fold coordinated simple cubic lattice. We see that 
the ClG(CuA1,) structure type behaves in just the opposite manner, becoming more 
compact as % decreases. Whereas the A atom in the AB2 Laves phase is surrounded by 
a coordination polyhedron containing twelve B atoms and four A atoms, that in the 
C16(CuA12) phase is surrounded by a coordination polyhedron containing only eight B 
atoms and two A atoms (see figure 3 of Villars et a1 [20] and figure 29.17 of Wells [ll]). 

The left-hand panel in figure 3 shows the predicted structure map for the case 
where the atoms have identical size. It was calculated by comparing the bond energies 
Ubond(NA, NB) of the five different structure types at the prepared volumes cor- 
responding to % = 1 taking the C1lb(MoSi2) lattice with a = 11.65 au, c = 9.70 au 
as reference [18] and choosing CA = CB = 2.29 au corresponding to the group VIA 
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transition element molybdenum [ 171. The energy bands and corresponding local den- 
sities of states were evaluated for nearly 50 different values of the atomic energy level 
mismatch EAB = EA - EB (ranging from -0.32 to +0.32 Ryd) using direct diag- 
onalization of the TB Hamiltonian and sampled over up to 700 k-points in the irreducible 
Brillouin zone within the tetrahedron method [22]. For each choice of atomic energy 
level mismatch EAB and average band filling N we can compute the corresponding 
electron occupancies N A  and NB on the A and B sites respectively so that for each 
structure type we have the bond energy Ubond with respect to a very fine mesh within the 

The 3 = 1 structure map in figure 3 shows that the Bcc-based lattice Cllb(MoSi2) 
is the most stable for an average band filling centred about N = 4. This is not unexpected 
in the vicinity of the diagonal NA = NB since the BCC group VA and VIA transition 
elements are stable here. However, we see that as the size of the atomic energy level 
mismatch increases (corresponding to I ANI increasing), the Cllb stability remains 
although the domain narrows. This causes the Laves domains in the upper half diagonal 
to be restricted to a relatively small region. Thus, the electronic contribution is not 
sufficient by itself to stabilize the Laves phases over the broad area which is observed 
experimentally in figure 1. 

The right-hand panel in figure 3 shows the results of increasing the relative size factor 
to 3 = 1.35 (in the upper half diagonal where CA > CB) or decreasing it to 3 = 0.84 (in 
the lower half diagonal where CA < CB). As expected from the behaviour of the atomic 
volumes in figure 2, the increase in the size factor has now stabilized the Laves phases 
over a much larger area in agreement with experiment, whereas the decrease in the size 
factor has extended the stability of the C16(CuA12) domains. We see that the right-hand 
panel of figure 3 is now in good qualitative agreement with the experimental structure 
map in figure 1. In the upper half diagonal the Laves phases are correctly ordered 
amongst themselves, changing from cubic (C15) to hexagonal (C14) back to cubic (C15) 
as the dB or NB increases. (Note that the small C15 domain for SITB = 60 (Mn) and 61 
(Fe) is due to the presence of magnetism [23].) In addition, the upper cubic Laves 
domain gives way to a small Bcc-based C l l b  domain as found experimentally. In the 
lower half diagonal we predict the correct relative ordering of the observed C16(CuA12) 
and Cllb(MoSi2) domains. The predicted Laves domains occur in a region of positive 
heat of formation and thus not found experimentally. 

In conclusion, we have studied the different roles played by size and electronic factors 
in stabilizing the transition metal Laves phases against two competing phases, namely 
the Bcc-based C11 b(MoSi2) structure type and C16(CuA12). Good qualitative agree- 
ment with the experimental AB2 structure map is found only if both size and electronic 
factors are taken into account within the simple TB model. 
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of Young Scientists from the Japanese Ministry of Education, Science and Culture. The 
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